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Abstract— Traditional channel capacity based on the discrete
spatial dimensions mismatches the continuous electromagnetic
fields. For the wireless communication system in a limited region,
the spatial discretization may results in information loss because
the continuous field can not be perfectly recovered from the
sampling points. Therefore, electromagnetic information theory
based on spatially continuous electromagnetic fields becomes
necessary to reveal the fundamental theoretical capacity bound
of communication systems. In this paper, we propose ana-
lyzing schemes for the performance limit between continuous
transceivers. Specifically, we model the communication process
between two continuous regions by random fields. Then, for the
white noise model, we use Mercer expansion to derive the mutual
information between the source and the destination. For the
close-form expression, an analytic method is introduced based
on autocorrelation functions with rational spectrum. Moreover,
the Fredholm determinant is used for the general autocorrelation
functions to provide the numerical calculation scheme. Further
works extend the white noise model to colored noise and discuss
the mutual information under it. Finally, we build an ideal
model with infinite-length source and destination which shows a
strong correpsondence with the time-domain model in classical
information theory. The mutual information and the capacity are
derived through the spatial spectral density.

Index Terms— Electromagnetic information theory (EIT),
mutual information, random field, Fredholm determinant, spatial
spectral density (SSD).

I. INTRODUCTION

WIRELESS communication systems employ electromag-
netic fields with three continuous spatial dimensions

for information exchange. However, the modern multiple-input
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multiple-output (MIMO) technology, viewed as a discretiza-
tion of the continuous spatial dimensions, mismatches the
continuous nature of electromagnetic fields in real-world com-
munication systems, thus causing its inability to fully explore
the spatial information [1]. Therefore, we should restore to the
continuous electromagnetic fields to analyze the fundamental
performance limit of an arbitrary communication system,
motivating the research of the electromagnetic information
theory (EIT) [2].

For EIT, one asymptotic approach to analyze the funda-
mental limit is called the spatial bandwidth [3], based on
which the degrees of freedom (DoF) can be theoretically
derived. The spatial bandwidth of scattered fields under a
time-harmonic model was rigorously derived in [4]. Further
works extended the time-harmonic model, which was focused
on a single frequency point, to a more general band-limited
model, and analyzed the DoF [5]. Unfortunately, these spatial
bandwidth-based procedures rely on the assumption that the
occupied region of the information destination tends to infinity.
In contrast, communication systems are often confined in
a finite-sized space in practice. In this practical scenario,
the spatial bandwidth method becomes inaccurate due to the
condition of the Nyquist sampling theorem.

For the practical communication system in a limited space,
several works utilized the orthogonal expansion techniques to
derive the DoF for EIT. For example, inspired by the orthog-
onal frequency-division multiplexing (OFDM), the authors
in [1] designed a set of bases to expand the Green’s function,
and derived the DoF between two parallel finite-length linear
antennas. Moreover, for the scenario where the two finite-
length linear antennas bear an intersection angle, a heuristic
method was proposed to construct the bases for the derivation
of DoF [6]. These works provide us with useful methods
for analyzing the DoF in EIT. However, they heavily rely
on the assumption of deterministic signals, thus being unable
to derive the information-theoretic capacity where stochastic
properties should first be modeled.

To derive the capacity of the electromagnetic channels, sev-
eral works introduced basis expansion to split the continuous
electromagnetic channel to almost orthogonal channels. The
approximation of the basis based on the radiating term of
the Green’s function was derived [7]. The orthogonal bases
between a pair of concentric spherical source and destination
were shown to be spherical harmonic functions [2]. More-
over, the capacity of the system with spherical source and
destination in lossy medium was obtained in [8]. Another
important approach using the Kolmogorov ϵ-capacity was
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utilized in [9] and [10], which was based on the maximum
amount of information transmissible through the channel with
an uncertainty level.

These works already found the best bases for the electro-
magnetic channels and derived the capacity with finite bases.
The capacity can be viewed as the mutual information under
a specific field distribution, where the mutual information
is maximized. However, an analytic solution and calculation
scheme for the mutual information between the transceivers
with arbitrary given field distribution has not been obtained
in the literature of EIT. Such analysis requires the analytical
analyzing scheme based on infinite bases decomposed from the
continuous channel. Moreover, the existing works considered
the spatial white Gaussian noise field. Since white noise is
only a special case of colored noise field and the practical
noise field may include non-white component, further works
are necessary to explore the mutual information and capacity
under colored noise scenario.

Different from existing works, in this paper, we first build a
model considering the non-white component of the noise field.
Then, we provide a strict analysis framework of the mutual
information and capacity based on the random field theory
and operator theory.1 The electromagnetic waves that carry
information are modeled as random fields, which follow the
statistical approach of Shannon. We introduce the theory of
operator analysis to derive the general expression of the mutual
information and provide the numerical calculation scheme of
it. Specifically, the contributions of this paper are summarized
as follows:
• First, we develop a system model of the wireless com-

munication between two continuous regions. We use
random fields to capture the statistical characteristics
of the signals and noise in the communication system.
The mutual information between the source and the
destination is defined by a supremum taken over all the
testing functions.

• Then, we consider a simplified model of the communi-
cation with finite-length transceivers under white noise
field. By exploiting Mercer expansion, we derive the
mutual information between the source and the destina-
tion. Next, we introduce the analytical scheme of deriving
the mutual information for autocorrelation functions with
rational spectrum. A special case, which has been adopted
in the existing scattering models, is analyzed to show
how the analytical scheme works. To generalize the
information formulas, we introduce a tool called the Fred-
holm determinant to obtain a general expression of the
mutual information, which enables numerical calculation
and convergence analysis. Some discussions about the
extendability of the above schemes are also included.

• Moreover, we adopt the operator analysis schemes to
extend the mutual information formula from white noise
model to more general cases with colored noise. A dis-
cretization scheme is provided for the numerical calcu-
lation. Numerical results show the convergence of the
calculation scheme and also provide some insights into
the performance comparison between continuous and
discrete systems.

1Simulation codes are provided to reproduce the results in this paper:
http://oa.ee.tsinghua.edu.cn/dailinglong/publications/publications.html.

Fig. 1. Electromagnetic model of the communication between two arbitrary
continuous regions.

• Finally, to illustrate the close relationship between the
proposed random field-based theory and the classical
time-domain information theory, we build an ideal model
with parallel infinite-length linear source and destination.
In this model, the mutual information between the source
and the destination is represented by the spatial spectral
density (SSD) of the electric field and the noise field
on the destination. The optimal current density distri-
bution on the source is derived by variational calculus
to achieve the maximum mutual information, i.e., the
capacity between the source and the destination.

Notation: bold uppercase characters denote matrices; bold
lowercase characters denote vectors; the dot · denotes the
scalar product of two vectors, or the matrix-vector multiplica-
tion. E [x] denotes the mean of random variable x; ϵ0 is the
permittivity of a vacuum, µ0 is the permeability of a vacuum,
and c is the speed of light in a vacuum; ∗ denotes the convolu-
tion operation, and F [f(x)] denotes the Fourier transform of
f(x); (f(x))+ is equal to f(x)+|f(x)|

2 ; ∇ is the nabla operator,
and ∇× is the curl operator; J0(x) is the Bessel function;
K0(x) is the zeroth-order modified Bessel function of the
second kind; Y0(x) is the zeroth-order Neumann function; |ϕ⟩
is the quantum mechanical notation of a function ϕ, where the
inner product is denoted by ⟨ψ|ϕ⟩; the matrix element of an
operator T under an orthonormal basis {ϕj}+∞j=1 is represented
by the Dirac notation Tij = ⟨i|T |j⟩; det(·) denotes the matrix
determinant or the Fredholm determinant.

II. ELECTROMAGNETIC WAVE COMMUNICATION MODEL

Maxwell’s equations, which consist of four differential
equations, describe how electromagnetic fields are generated
by currents, charges and the change of fields [11]. Here
we focus on the two curl equations in Maxwell’s equations,
which are called the Faraday’s law and the Ampère’s law, i.e.,
∇×E = −∂B

∂t and ∇×H = J + ∂D
∂t .

These equations are the fundamental physical laws that
govern the electromagnetic wave communications. To simplify
the analysis, we adopt the common assumption that the
electromagnetic wave oscillates on a single frequency point,
which is the well-known time-harmonic assumption [2]. In this
way, the temporal derivative operator ∂/∂t can be replaced by
−jω in Maxwell’s equations. The time-harmonic assumption
simplifies the Maxwell’s equations into complex-valued partial
differential equations involving only spatial derivatives, i.e.,
∇ × E = jωB and ∇ × H = J − jωD. From the above
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equations we can obtain the vector wave equation [12] as

∇×∇×E (r)− κ2
0E (r) = jωµ0J (r) = jκ0Z0J (r) , (1)

where κ0 = ω
√
µ0ε0 is the wavenumber and Z0 = µ0c =

120π [Ω] is the free-space intrinsic impedance.
Consider two arbitrary regions Vs and Vr as the source

and the destination for wireless communications. The current
density at the source is J(s) : R3 → C3, and the induced
electric field at the destination is E(r), where r ∈ R3 is
the coordinate of the field observer. The received electric
field is Y(r) = E(r) + N(r), where N(r) is the noise
field. Exploiting the linear nature of (1), the Green’s function
G(r, s) ∈ C3×3 is introduced to solve this equation. Utilizing
the Green’s function, the electric field E(r) can be expressed
by

E(r) =
∫

Vs

G(r, s)J(s)ds, r ∈ Vr. (2)

The Green’s function in unbounded, homogeneous mediums
at a fixed frequency point is [13]

G(r, s) =
jκ0Z0

4π

(
I +
∇r∇H

r

κ2
0

)
ejκ0∥r−s∥

∥r− s∥

=
jκ0Z0

4π
ejκ0∥r−s∥

∥r− s∥

[ (
I− p̂p̂H

)
+

j
2π ∥r− s∥ /λ

(
I− 3p̂p̂H

)
− 1

(2π ∥r− s∥ /λ)2
(
I− 3p̂p̂H

) ]
[Ω/m2], (3)

where p̂ = p
∥p∥ and p = r − s. Some existing works [1],

[6] adopted far-field assumption and only preserved the item
jκ0Z0

4π
ejκ0∥r−s∥

∥r−s∥
(
I− p̂p̂H

)
in (3). Different from these works,

we use the whole expression in (3) to make our analysis and
numerical calculation valid for both far-field and near-field
scenarios.

In this section, we have reviewed the basic model of elec-
tromagnetic wave communication. However, the information
transmission process naturally involves the elimination of
uncertainty, which requires probabilistic modeling of the EM
fields. The amount of information transmitted through the EM
field can be viewed as the amount of uncertainty eliminated
in the instant the field in Vr is observed. Thus, in the next
section, we will use Gaussian random fields to capture the
statistical properties of electromagnetic fields, and then derive
the mutual information.

III. RANDOM FIELD MODELING

In this section, we analyze the statistical properties of the
signals and noises. We use Gaussian random fields to model
the signals and noise of wireless communication systems,
which follows the statistical approach of Shannon. Based on
the random field modeling, we define the mutual information
in a supremum form, which provides foundations for further
analysis.

A. Random Field Modeling of the Signals

The information-theoretic analysis in this paper is based
on stochastic models according to Shannon’s approach, which
motivates us to model the continuous EM signals by a ran-
dom field. Each realization of the random field represents a
radiating and receiving pattern during one channel use. All
the realizations are gathered together to form a probabilis-
tic ensemble, which reflects the statistical characteristics of
the wireless communication system, thus leading to mutual
information and capacity. Among all kinds of random fields,
the Gaussian random field is of theoretical significance, since
its Gaussian distribution is the capacity-achieving distribution
of an AWGN channel [14]. As a result, we use Gaussian
random field to depict the statistical characteristics of both
the current density at the source and the electric field at
the destination. The Gaussian random field is assumed to be
continuous, separable, and fully characterized by its mean and
autocorrelation functions [15]. The current density J(s) at the
source and the induced electric field E(r) at the destination
are considered as random fields with autocorrelation functions
given by

RJ(s, s′) = E[J(s)JH(s′)] [A2/m4], (4a)

RE(r, r′) = E[E(r)EH(r′)] [V2/m2]. (4b)

From (2), we can derive the relation between the autocorre-
lation function of the current density and that of the electric
field as

RE(r, r′) = E[E(r)EH(r)]

=
∫

Vs

∫
Vs

G(r, s)RJ(s, s′)GH(r, s)dsds′. (5)

In this model, we assume that the channel is deterministic,
and it only consists of line-of-sight components, which means
that the uncertainty of the field measurements only comes from
the additive noise field. The model of the noise field will be
discussed in the following subsection.

B. Random Field Modeling of the Noise

In this subsection, we will analyze the model of the noise
field. The noise in the communication between a pair of
continuous source and destination can be decomposed into
two categories: measurement noise and radiation interference.

For the measurement noise, the authors of [2] attributed
this kind of noise to the non-ideal factors in communications,
including imperfect antenna locations, imprecise field mea-
surements, and numerical errors inevitable during signal pro-
cessing. Since these defects are usually spatially uncorrelated,
the noise is then modeled by a white Gaussian random field,
which can be characterized by

E
[
Enoise(r)EH

noise(r
′)
]

=
n0

2
I3δ(r− r′), (6)

where n0 [V2 ·m] is the single-sided power spectral density in
the three-dimensional wavenumber domain. This measurement
noise is identical in distribution with the so-called thermal
noise, which is widely used in the literature, but it is a wider
notion consisting of all the spatially uncorrected undesired
signals. The white Gaussian noise (WGN) assumption of
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this measurement noise helps simplify our analysis. How-
ever, the thermal noise model can not depict the interference
from other electromagnetic sources which cause the radiation
interference.

For the radiation interference, it can be viewed as the
superposition of the incident electromagnetic waves which are
not generated by the desired source current [1]. The simplest
analysis is to assume an isotropic incident wave, i.e., the
incident power is uniformly distributed among different spatial
directions. Thus, the electromagnetic wave which impinges on
the destination from an arbitrary angle can be represented in
the spherical coordinates by an elevation angle θ ∈ [0, π], and
an azimuth angle ϕ ∈ [−π, π). It is derived in [1] that, with
this isotropic assumption, the noise field can be characterized
by

E
[
N(r + r′)N(r′)H

]
= σ2ρ(r)I3, (7a)

ρ(r) = sinc
(

2 ∥r∥
λ

)
= sinc

(
2r
λ

)
. (7b)

Note that from (7), the noise field should also be completely
isotropic, i.e., the field components in orthogonal directions
should not be correlated. Unfortunately, this is not the case
in reality. This misunderstanding occurs because the physical
law that electromagnetic waves are transverse waves was not
taken into account in [1], i.e., the direction of the oscillating
electric field should be perpendicular to the wave propagation
direction. Here we will fix this problem and derive a new noise
model based on random fields.

The noise field observed at position r can be derived by
integrating the waves a ∈ C3 incoming r from all spatial
directions, which can be represented by

N(r) =
∫ π

−π

∫ π

0

a(θ, φ)ejκ·rdθdφ, (8)

where the wavevector is expressed in spherical coordinates as

κ =
2π
λ

[cosφsinθ, sinφsinθ, cosθ] ∈ R3. (9)

Let κ = ∥κ∥, and the normalized propagation direction
vector κ̂ = κ/κ, then we have aH(θ, φ)κ̂ = 0, i.e., the
incident electric field oscillates in the plane perpendicular to
the wavevector k. By further assuming an uncorrelated random
incident phase of the two distinct polarizations, the correlation
matrix of the random vector a(θ, φ) can be represented by
constant multiples of I−κ̂κ̂T. Thus, we can obtain the angular
autocorrelation of a(θ, φ) to be

E
[
a(θ, φ)aH(θ′, φ′)

]
= σ2f(θ, φ)(I− κ̂κ̂T)
× δ(θ − θ′)δ(φ− φ′), (10)

where the dimensionless density f(θ, φ) equals sinθ
4π because

of the isotropic propagation assumption [1], and σ2 [V2/m2]
is the average second-order moment of the noise field. With
(10), the autocorrelation function of the noise field can then
be derived by integrating incident waves from all the spatial

directions over the unit spherical shell:

E
[
N(r + r′)NH(r′)

]
=
∫ π

−π

∫ π

0

∫ π

−π

∫ π

0

E
[
a(θ, φ)aH(θ′, φ′)

]
ejκ·(r+r′)

e−jκ′·r′dθdφdθ′dφ′

=
∫ π

−π

∫ π

0

σ2f(θ, φ)(I− κ̂κ̂T)ejκ·rdθdφ

=
σ2

4π

∫∫
S3

(I− κ̂κ̂T)ejκ·rdS, (11)

where dS denotes the area element on the unit spherical shell.
To solve the definite integral in (11), we define two auxiliary
functions f1(β) and f2(β) as

f1(β) =
∫ 1

−1

ejβxdx = 2
sinβ
β

, (12a)

f2(β) =
∫ 1

−1

x2ejβxdx = 2
(

sinβ
β

+
2cosβ
β2

− 2sinβ
β3

)
.

(12b)

Then, we have

σ2

4π

∫∫
S3

Iejκ·rdS =
σ2

4π

∫ π

−π

∫ π

0

Iejκ·rsinθdθdφ

=
σ2

4π

∫ π

−π

∫ π

0

Iejκrcosθsinθdθdφ

=
σ2

2
If1(κr). (13)

For the term σ2

4π

∫∫
S3

κ̂κ̂Tejκ·rdS, we consider its component
along r̂ and perpendicular to r̂ sequentially to derive its
analytical representation. For the component along r̂, we have

σ2

4π

∫∫
S3

κ̂κ̂Tejκ·rdS · r̂ =
σ2

4π

∫∫
S3

κ̂(κ̂Tr̂)ejκ·rdS

(a)
=

σ2

2

∫ π

0

sinθcos2θejκrcosθdθr̂

=
σ2

2
f2(κr)r̂, (14)

where (a) comes from the symmetric property of the integral
along the r̂ axis. In order to solve the components which
are perpendicular to r̂, we assume that t̂1 and t̂2 are two
orthogonal directions on the plane perpendicular to r̂, where
the direction cosines of unit vector κ̂ under the newly defined
coordinate system (̂t1, t̂2, r̂) are (sinθcosφ, sinθsinφ, cos θ).
Then, we can derive

t̂1 ·
σ2

4π

∫∫
S3

κ̂κ̂Tejκ·rdS · t̂1

=
σ2

4π

∫∫
S3

(sinθcosφ)2ejκ·rdS

=
σ2

4π

∫ π

−π

∫ π

0

sin3θcos2φejκrcosθdθdφ

=
σ2

4

∫ π

0

sin3θejκrcosθdθ =
σ2

4
(f1(κr)− f2(κr)), (15)
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and

t̂2 ·
σ2

4π

∫∫
S3

κ̂κ̂Tejκ·rdS · t̂2 =
σ2

4π

∫∫
S3

(sinθsinφ)2ejκ·rdS

=
σ2

4
(f1(κr)− f2(κr)). (16)

Similarly, we can prove that the components t̂i ·∫∫
S3

κ̂κ̂Tejk·rdS · t̂j = 0 for all i ̸= j, i, j ∈ {1, 2}.
Combining all the above results into a 3-by-3 autocorrelation
matrix, we have

E
[
N(r + r′)NH(r′)

]
=
σ2

2
f1(κr)I−

σ2

2
f2(κr)r̂r̂T

− σ2

4
(f1(κr)− f2(κr))(I− r̂r̂T)

=
σ2

4
(f1(κr) + f2(κr))I +

σ2

4
(f1(κr)− 3f2(κr))r̂r̂T.

(17)

Specifically, the noise field correlation measured along the
polarization direction r̂ is given by

E [N(r + r′)N∗(r′)] = r̂HRNr̂ =
σ2

2
f1(κr)−

σ2

2
f2(κr)

= 2σ2

(
sin(κr)
(κr)3

− cos(κr)
(κr)2

)
. (18)

The result can also be applied to a uniform linear antenna
array placed on the x-axis, where the polarization orientation
is parallel to the y-axis. With this assumption, the noise field
correlation is given by

E [N(r + r′)N∗(r′)] =
σ2

4
(f1(κr) + f2(κr)). (19)

This equation reveals that different from our previous under-
standing of the noise that its autocorrelation is of the form
sinc(·). The precise noise autocorrelation contains more high-
spatial-frequency components, which come from the term
f2(κr).

Remark 1: Equation (17) fully depicts the autocorrelation
of the noise field of three polarization orientations under the
assumption of isotropic incidence. This form of autocorrelation
is also employed to describe the channel autocorrelation
[16, eqn (19)], which is reasonable because the noise dis-
cussed here can be considered as unwanted signals received
through a random channel.

Remark 2: This noise model is based on the isotropic
scattering assumption, which can be easily extended to the
non-isotropic case. If we assume that the radiation interference
is not uniform in spatial angle but concentrated near a certain
angle, we can use von Mises-Fisher (vMF) distribution [17],
[18] to depict such angular concentration. A similar idea was
proposed in [19] to analyze the angular selectivity of the
random channel modeling but the analytic solution was not
given. For the 3-dimensional von Mises-Fisher distribution,
which is a close approximation to the spherical analogue of
the Gaussian distribution, the probability density function is
given by

f(x|µ) = C(∥µ∥)ex̂·µ, (20)

where C(∥µ∥) = ∥µ∥
2π(e∥µ∥−e−∥µ∥)

is the normalization con-
stant. Instead of (11) we have

E
[
N(r + r′)NH(r′)

]
=
σ2

4π

∫∫
S3

(I− κ̂κ̂T)ejκ·reκ̂·µdS.

(21)

Then, by replacing r ∈ R3 in (11) by r = rR − jµ/κ ∈
C3. The imaginary part jµ/k can be combined into the
spatial harmonic factor ejκ·r of the planar wave, in order
to describe a vMF distribution of the incident angles θ and φ.
Equation (17) can then be extended to the non-isotropic case
accordingly by analytic continuation [20] techniques, leading
to

E
[
N(r + r′)NH(r′)

]
=
σ2

4
(f1(κr1) + f2(κr1))I

+
σ2

4
(f1(κr1)− 3f2(κr1))r̂1r̂T

1 ,

(22)

where r1 =
√

(r − jµ/κ)T(r − jµ/κ) and r̂1 = r−jµ/κ
r1

.

C. Mutual Information Based on Random Field Modeling

The mutual information was originally defined by Shannon
in his seminal paper [14] to be the amount of uncertainty
reduced by observations of the channel outputs. The channel
usually admits discrete random input symbols, and gives out
discrete output symbols. However, in our study on electromag-
netic information theory, the channel output E(r) is a spatially
continuous electromagnetic field, to which we assign uncer-
tainty by modeling it as a Gaussian random field. Similar to
the standard definition of mutual information, upon obtaining
noisy measurements Y(r) of this field, we can also evaluate
the amount of information received through the uncertainty
reduction mechanism, but the field measurements should be
well-defined to avoid the “continuum” difficulties encountered
when analyzing a spatially continuous field.

As introduced in the above subsection, the noise is modeled
as a Gaussian random field with autocorrelation function
RN(r, r′) [1] and the autocorrelation function of the noisy
electric field is denoted by RY(r, r′). Following the defini-
tion in [15], we use testing functions to define the mutual
information between the random fields J and Y by

I(J;Y) = sup{I(J(ϕ1, · · · , ϕm),Y(ψ1, · · · , ψn))}, (23)

where J(ϕ1, . . . , ϕm) = {⟨ϕ1|J⟩, · · · , ⟨ϕm|J⟩} and
Y(ψ1, . . . , ψn) = {⟨ψ1|Y⟩, · · · , ⟨ψn|Y⟩} are random
vectors, and the inner product ⟨ϕ|J⟩ equals to∫

Vs
ϕ∗(s)J(s)ds. The supremum is taken over all the

possible integers m, n, and testing functions ϕ, ψ ∈ Φ, where
Φ is the set of all the smooth functions that vanish outside Vs.

According to [15, Theorem 1.3], we can select a sequence
of ϕk

i which converges to δ(s − si) when k → ∞. Then,
the mutual information I(J,Y) can be calculated by the
mutual information between two groups of points, expressed
as sup{I(J(s1, · · · , sm),Y(r1, · · · , rn))}. This means that
we can use the random variables defined on the spatial sam-
pling points {s1, · · · , sm} and {r1, · · · , rn} to approximate
the mutual information between the two random continuous
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Fig. 2. Analysis of mutual information between a source and destination,
both of finite length.

electromagnetic fields. It is worth noting that this claim only
shows the theoretical existence of the sampling points, which
does not involve the way to choose them. In this paper, we will
show a discretization scheme of the continuous field and the
convergence is provided according to numerical analysis.

In this section, the mutual information between continuous
regions is defined in a supremum form using random fields.
Then, in the next section, we will simplify the model with
continuous regions to obtain an analytical solution to the
mutual information.

IV. MUTUAL INFORMATION WITH FINITE-LENGTH
TRANSCEIVERS UNDER WHITE NOISE

In this section, to obtain more insightful results, we consider
the simplified case where a pair of parallel finite-length linear
source and destination are employed as transceivers. White
noise model is used in this section for simplicity and non-white
noise model will be discussed in the next section for generality.
Since the simplified model here is similar to the classical
stochastic process in the one-dimensional time domain, most
of the existing analyzing schemes and tools can be transfered
to the analysis in this simplified scenario. To make the schemes
more general, we also show how the adopted tools and results
from stochastic process can be extended to random field
with at least two dimensions. Specifically, to evaluate the
mutual information, we apply Mercer expansion [21] as a
basic mathematical tool. Furthermore, we show how to derive
analytical solutions of the mutual information and provide
an example. Finally, we introduce Fredholm determinant to
provide a general expression of the mutual information. The
expression based on Fredholm determinant has numerical
evaluation scheme whose convergence is guaranteed in the
literature.

A. Mercer Expansion of a Gaussian Random Field

Assume that the source and the destination are two linear
parallel length-L continuous antenna arrays placed along the
z-axis and separated by a distance of d. Without loss of
generality, we only care about the fields along the z-axis,
i.e., the vector field E(r) is only observed at the z-direction.
In the following analysis, the scalars J(s) and E(r) represent
J(s) · êz and E(r) · êz, respectively. The second moments
(autocorrelation) of J(s) are denoted by RJ(s, s′), s, s′ ∈
[−L/2,+L/2].

Through this approach, we have built a simplified model
which is highly similar to the classical model of random
processes in information theory. Then it will be convenient
for us to use the tools in classical information theory to
solve and analyze the performance of EIT systems, with the
transformation from the time-frequency domain to the space-
wavenumber domain. Furthermore, we show that the tools
for random processes can be extended to multi-dimensional
random fields, which can solve other scenarios like rectangular
transceivers in EIT.

The relationship between J(s) and E(r) can be described
using the element in the upper left corner of the matrix G
in (3), i.e., G1,1, which can be derived as

g(r, s) =
jZ0e

j2π
√

x2+d2/λ

2λ
√
x2 + d2

[ j
2π
√
x2 + d2/λ

d2 − 2x2

x2 + d2

+
d2

x2 + d2
− 1

(2π/λ)2(x2 + d2)
d2 − 2x2

x2 + d2

]
, (24)

where x = r − s and d is the distance between the par-
allel source and destination. Therefore, we have E(r) =∫ L

0
g(r, s)J(s)ds.

Since the noiseless received field is uniquely determined by
the source and the deterministic channel, the autocorrelation
function of the receiving electric field is expressed by the
source autocorrelation RJ(s, s′) and the Green’s function
g(r, s), written as

RE(r, r′) =
∫ L

0

∫ L

0

g(r, s)RJ(s, s′)g∗(r′, s′)dsds′. (25)

In order to evaluate I(J;Y), according to (23), a set of
supremum-achieving testing functions {ϕk}+∞k=1 are used to
convert the random field into a sequence of pairs of ran-
dom variables (⟨ϕk|J⟩, ⟨ϕk|Y⟩)+∞k=1 for further information-
theoretic analysis. Fortunately, the Mercer expansion provides
us with a powerful tool to decompose random fields into
random variables, as long as the autocorrelation function is
given. The supremum-achieving of this expansion is based on
the [15], as long as I(J;Y) < ∞. According to Mercer’s
theorem [21], the Mercer expansion of the electric field is

RE(r, r′) =
+∞∑
k=1

λkϕk(r)ϕ∗k(r′), (26)

where ϕk(r) are the solution functions to the integral eigen
problem

λkϕk(r′) =
∫ L

0

RE(r, r′)ϕk(r)dr; k > 0, k ∈ N. (27)

The eigenfunctions are orthonormal, satisfying the following
equation ∫ L

0

ϕk1(r)ϕ
∗
k2

(r)dr = 1k1=k2 (28)

where the eigenvalues {λk}+∞k=1 are arranged in descend-
ing order. The field E(r) can be decomposed by E(r) =∑∞

k=1 ξkϕk(r), where E[ξki
ξ∗kj

] = λki
1i=j . In fact, other

orthogonal bases can be chosen instead of ϕk(r), but only
Mercer expansion can guarantee that ξki and ξkj are un-
correlated, which makes the mutual information of the decom-
posed subchannels additive.
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Similarly, for the noise field, the Mercer expansion also
exists and we denote the eigenfunctions by ϕ′k(r) and the
eigenvalues by λ′k. Now we further assume that the noise
field is white Gaussian2 with the noise power spectral density
n0/(2

√
2π). This assumption greatly simplifies the analysis,

because the Gaussian white noise has a simple autocorrelation
function RN (r, r′) = n0

2 δ(r− r
′), which means that the inte-

gral equation n0
2 ϕk(r′) =

∫ L

0
RN (r, r′)ϕk(r)dr; k > 0, k ∈ N

holds for arbitrary integrable function ϕk(r). Therefore, the
received electric field and the noise3 can be expanded on
the same orthogonal bases ϕk(r), and the mutual information
between the electric field E and the received field Y can be
expressed by the eigenvalues of (27)

I(E;Y ) =
+∞∑
k=1

log
(

1 +
λk

n0/2

)
. (29)

The rigorous proof is provided by [23, Theorem 1].
Remark 3: For simplicity, we focus on the linear

transceivers in the paper, so as to use the tools and conclusions
in the classical theory of stochastic process. However, the
analyzing schemes here are not limited to the scenario with
linear transceivers, but can be extended to other scenarios
like two-dimensional surfaces. The conclusions in stochastic
processes should also be extended to those in random fields.
For example, if the source is a rectangular surface with
current density J(s) = J(sx, sy) and the destination receives
electric field E(r) = E(rx, ry) in a rectangular surface.
We can also derive the autocorrelation function RE(r, r′) of
the electric field. Since the rectangular surface is a compact
separable metric space if we define the area as the measure
on the space, we can perform Mercer expansion on random
field E(rx, ry) according to [21]. The expansion is similar
to (26) as RE(r, r′) =

∑
k λkϕk(r)ϕk(r′). Therefore, mutual

information expression and the corresponding derivation
can also be done under the scenario with two-dimensional
transceivers. For three-dimensional transceivers, the extension
is similar to the two-dimensional cases. Furthermore, if we
want to consider the vector-valued fields as J(s) and E(r),
we can decompose E(r) according to the extension of the
Mercer theorem [24].

From (29) we have derived the mutual information between
the induced electric field and the received field. One interesting
phenomenon is that although J and E may not obey a one-
to-one correspondence, the equation that I(E;Y ) = I(J ;Y )
still exists. The reason that J and E may not be one-to-one
correspondent is when we do Fourier transform on both sides,
we have F [E] = F [g]F [J ]. Since F [g] has two zeros on
κ = ±κ0, the corresponding two points in F [J ] can not be
solved. Physically this means that the electromagnetic wave
with κ = ±κ0 can only transmit along the line of the source
and can not be received by the destination.

Next we will show why I(J ;Y ) = I(E;Y ). This is from
the equality that I(J ;Y )+I(Y ;E|J) = I(Y ;E)+I(Y ; J |E).

2In the next section, we will deal with the much more complicated case
where the noise is Gaussian but not necessarily white.

3The Gaussian white noise field is no longer a “proper” random field [22].
It cannot be specified by the finite-dimensional distribution function. Instead,
it can only be defined by its projections onto a complete orthonormal set of
basis functions.

On the one hand, we can conclude that I(J ;Y ) ⩽ I(E;Y )
by the data processing inequality [25], because J → E → Y
forms a Markov chain and I(Y ; J |E) = 0. On the other hand,
since E(r) =

∫ L

0
g(r, s)J(s)ds is a deterministic function,

we have I(Y ;E|J) = 0, which leads to I(J ;Y ) ⩾ I(E;Y ).
Therefore, we have I(J ;Y ) = I(E;Y ).

Remark 4: Our analysis here from the mutual informa-
tion perspective is compatible with existing works about the
capacity. The existing works decompose the current density
and electric field on a set of bases, which is similar to the
SVD decomposition on HH†, where H is the channel matrix
in discrete MIMO systems [26]. Our work decomposes the
current density and electric field according to their auto-
correlation function, which finds the bases for the field with
given autocorrelation function. This scheme is similar to the
decomposition of the covariance matrix to obtain the mutual
information between random vectors, since I(X;X + N) =
logdetKX+KN

KN
=
∑m

i=1(1+ λm

n0/2 ), where λk is the eigenvalue
of KX and KN = (n0/2)I.

It is obvious that when fixing the field distribution which
maximizes the mutual information, the capacity between con-
tinuous transceivers can be obtained. This conclusion is an
extension from the discrete matrices to continuous operators.
For discrete matrices we have C = max

KJ

logdetHKJHH+KN

KN

with respect to Tr(KJ) ⩽ P . The optimal solution is obtained
by using singular value decomposition and Karush–Kuhn–
Tucker (KKT) theorem. For operators, Mercer expansion is
utilized instead of the singular value decomposition. Through
this approach, an operator can be viewed as an infinitely
large matrix [2], and the optimization problem can be solved
by extended KKT theorem [27] for countably infinite variables.
The result is in the form of water-filling method.

The added values of the mutual information obtained in the
paper can be listed as follows: 1) we can derive the mutual
information under arbitrary given field distribution. If the field
distribution can only be chosen from several given modes
instead of the best one when capacity is achieved, the mutual
information analyzing scheme can help to find the performance
bound. 2) closed-form expression and numerical calculation
scheme whose convergent rate is guaranteed can be obtained
from the scheme we adopted, which will be introduced in the
following subsections. 3) mutual information under colored
noise field can be obtained and the corresponding numerical
calculation scheme is proposed, which will be presented in
Section. V.

B. Analytic Expression Based on Autocorrelation Function
With Rational Spectrum

From the above subsection, we have

I(J ;Y ) = I(E;Y ) =
+∞∑
k=1

log
(

1 +
λk

n0/2

)
. (30)

This formula is hard to evaluate, since there are infinite number
of λK to calculate. In this part, we will first show how to
derive an analytic expression without calculating λk in [15].
Then, we will propose a specific scenario and derive the
corresponding analytic expression of mutual information.
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For RE(r, r′) =
∫∞
−∞ ej(r−r′)x |Q(jx)|2

|P (jx)|2 dx, where
Q(jx) =

∑n
i=0 bi(jx)

i and P (jx) =
∑n

i=0 ai(jx)i,
the eigen-problem can be expressed by λϕ(r) =∫ L

0

∫∞
−∞ ej(r−r′)x |Q(jx)|2

|P (jx)|2 dxϕ(r′)dr′. By performing
P ( d

dr )P (− d
dr ) on the integral equation, we have

P (
d
dr

)P (− d
dr

)ϕ(r) =
2π
λ
Q(

d
dr

)Q(− d
dr

)ϕ(r). (31)

By performing dk

drkP ( d
dr ) (k = 0, · · · , n− 1) on the integral

equation, we have boundary conditions

dk

drk
P (

d
dr

)ϕ(r) =
1
λ

∫ L

0

∫ ∞

−∞
ej(r−r′)x |Q(jx)|2(jx)k

P (−jx)
dx

× ϕ(r′)dr′, (32)

where r is set on 0 and L to obtain the boundary conditions.
By solving (31) and substituting the solutions into the

boundary conditions in (32), we have g(z) = 0, which
contains 1/λk as its roots [15]. By deleting useless solutions
in g(z) = 0, we can obtain f(z) = f(0)

∏∞
k=1(1 − zλk) as

a direct consequence of the Hadamard’s factorization theo-
rem [20]. Then, from (30), we can directly obtain the mutual
information without solving every λk. The mutual information
can be expressed by

I = log
+∞∏
k=1

(
1 +

λk

n0/2

)
= log

f(− 1
n0/2 )

f(0)
. (33)

For simple autocorrelation functions like the exponential
autocorrelation function we have discussed in the paper, such
analysis is much easier than deriving all λ to obtain the mutual
information. Since any correlation function can be approxi-
mated by a function with rational spectrum, this analyzing
procedure is extendable to a wide range of scenarios.

Next, we will introduce a special case to show how this ana-
lyzing procedure works. The special case is when the electric
field has exponential autocorrelation function as RE(r, r′) =
Pe−α|r−r′|. We choose this special case not only because it
is a very simple case where a stochastic process has a rational
spectrum, but also because it has some practical meanings.
For example, it is a widely used model when analyzing the
scattering field from a surface [28]. If some surfaces in the
channel scatter the field, the autocorrelation function may
behave like exponential functions. The parameter P [V2/m2]
determines the power of the received field, and the parameter
α [1/m] controls the correlation of the received field. If we
want to solve the eigenvalues of the integral equation (27),
we can obtain the solutions from [23] as λk = 2αP

α2+ω2
k

and
ϕk(r) = 1

Zk
(ωkcos(ωkr) + αsin(ωkr)), where Zk are the

normalization constants to ensure the orthonormality (28), and
the resonant frequencies ωk [23] are the positive solutions to
the transcendental equation

2arctan(ωk/α) = kπ − ωkL, k ≥ 1, k ∈ Z. (34)

Although we can obtain λk, we will follow the approach
in [15] to derive the mutual information and use the λk derived
to verify the correctness. According to (31) we have

ϕ′′(r)− (α2 − 2Pα
λ

)ϕ(r) = 0. (35)

According to (32) we have the boundary conditions
ϕ′(0) − αϕ(0) = 0 and ϕ′(L) + αϕ(L) = 0. By solving
(35) and substituting it into the boundary conditions, we have
g(z) = 2αω cos(ωL) − (ω2 − α2) sin(ωL) = 0, where
ω2 = 2αP

λ − α2 = 2αPz − α2.
Since z = α/(2P ) is a root of g(z) but an excep-

tional root of the boundary conditions, we remove it from
g(z) to construct another entire function f(z) directly from
g(z). The f function has the following form f(z) =
g(
√

2αPz − α2)/
√

2αPz − α2. It can be proved that all the
zeros of g(ω) lie on the real axis, so all zeros of the entire
function f(z) are given by 1/λk, arranged in the ascending
order on the positive real axis.

Therefore, from (33), the mutual information is then explic-
itly expressed as

I = log

(
cosh(αL

√
1 + 4P/n0α) +

1 + 2P/n0α√
1 + 4P/n0α

× sinh(αL
√

1 + 4P/n0α)

)
− αL. (36)

This analyzing scheme for the linear transceivers can be
extended to other scenarios, e.g., circular transceivers. The
integral problem can be transferred from (27) to

λkϕk(θ′) =
∫ θ0

0

RE(θ, θ′)ϕk(θ)dθ; k > 0, k ∈ N,

θ ∈ [0, θ0], θ′ ∈ [0, θ0], (37)

where θ0 ∈ (0, 2π). The assumption that θ0 < 2π is to
avoid the boundary condition ϕ(n)(0) = ϕ(n)(2π). When
θ0 < 2π, the analyzing procedure of this model has no
difference from the procedures mentioned above. The mutual
information of the scenario when θ0 = 2π can be viewed as
the limitation lim

θ→2π
Iθ.

C. General Expression Based on the Fredholm Determinant

In the previous section, fortunately, we have found an
explicit expression of the mutual information between a pair
of correlated random fields. The restriction on the random
fields is that they should be the observation of stationary
random fields in a spatial region, which ensures the existence
of the spectrum of the random fields. However, in general,
the condition that RE(r, r′) only relies on r − r′ does not
exist. Therefore, we cannot always find a simple closed-form
analytic function whose zeros are exactly all the eigenvalues
of a general autocorrelation operator. But such an analytic
function always exists mathematically, which can be explicitly
constructed from the Fredholm determinant [29] of a bounded
invertible operator in the form 1 + T . In this section, we will
employ the Fredholm determinant to provide an analytic solu-
tion to the mutual information between the fields at the source
and the destination, which equals the result from Mercer
expansion but has good analytical properties and reliable
numerical calculation schemes.

Let G be the group of bounded operators of the form 1+T
on a Hilbert space H , where T is a trace-class operator [30],
and 1 is the identity operator. The Fredholm determinant of
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1 + T ∈ G is defined by the following infinite series:

det(1 + T ) :=
+∞∑
k=0

Tr(ΛkT ), (38)

where ΛkT is the k-th exterior power [31] of the bounded
operator T on ΛkH , and ΛkH denotes the k-th exterior
product of H . Thus, an analytic function f(z) := det(1 +
zT ) , z ∈ C can be naturally constructed, from which the
mutual information can be evaluated.

Remark 5: The Fredholm determinant det(·) is a homomor-
phism of G into the multiplicative group of the complex num-
bers C, i.e., det(AB) = det(A) det(B), ∀A,B ∈ G, which
is similar to the determinant of a square matrix. Furthermore,
suppose the trace-class operator T has eigenvalues λk, then
det(1 + T ) =

∏
k(1 + λk).

From the above remark, we can conclude that the Fredholm
determinant is a nearly-perfect parallel of the matrix determi-
nant. Similar to the fact that the ergodic MIMO capacity can
be expressed in a determinant form, the mutual information
between continuous regions can also be expressed by the
Fredholm determinant. Specifically, starting from (29) which
is obtained by using Mercer expansion, the mutual information
with finite-length destination has already been expressed in the
infinite product form I = log

∏+∞
k=1

(
1 + λk

n0/2

)
. Now we try

to express I by the Fredholm determinant of some operator.
Since the autocorrelation function RE(r, r′) can be considered
as an integral operator TE :

(TEϕ)(r) =
∫ a

0

RE(r, r′)ϕ(r′)dr′, (39)

according to Remark 5, we can take the Fredholm determinant
of the operator (1 + TE/(n0/2)) to compute the infinite
product

∏
k(1 + λk/(n0/2)), where {λk} are the eigenvalues

of TE :

I =
∏
k

(
1 +

λk

n0/2

)
= log det

(
1 +

TE

n0/2

)
. (40)

Note that the eigenvalues λk of TE are equivalent to the eigen-
values of the eigen problem (27), and the mutual information
I is exactly the function value of the induced analytic function
f(z) := det(1 + zTE) evaluated at z = 1/(n0/2).

Our analysis in the following parts is based on Fredholm
determinant for operator T with kernels K(r, r′), which corre-
spondes to the linear transceivers. However, the expression of
Fredholm determinant and the related analyzing schemes are
not restricted to this scenario. The linear transceivers can be
naturally extended to rectangular transceivers or other shapes,
since the Fredholm determinant is well defined for any trace
class operator T [29].

D. Numerical Calculation Method of Fredholm Determinant

Since the Fredholm determinant is a widely-used tool in
physics [32], its numerical properties have been thoroughly
studied. As a result, we can provide a numerical calculation
method for the mutual information I and the corresponding
convergence analysis according to [33]. Inspired by the numer-
ical integral method, the operator TE can be approximated by

discrete summation

(TEϕ)(r) :=
∫ a

0

K(r, r′)ϕ(r′)dr′ ≈
m∑

j=1

wjK(r, r′j)ϕ(r′j),

(41)

where K = RE : [0, L]2 → C is called the kernel of the
integral operator TE , and the integral equation can then be
discretized into

m∑
j=1

wjK(ri, rj)ϕk(rj) = λkϕk(ri). (42)

When K(ri, rj) = δ(ri, rj), the identity operator 1 is dis-
cretized into an identity matrix 1 ∼

∑m
j=1 1i=j . The Fredholm

determinant can then be approximated by

I ≈ logdet
(
1i=j +

wjK(ri, rj)
n0/2

)m

i,j=1

= logdet

(
1i=j +

w
1/2
j K(ri, rj)w

1/2
j

n0/2

)m

i,j=1

. (43)

The convergence of this discretization method is proven
in [33], which is dependent on the way of discretizing the inte-
gral operator TE . For example, Gauss-Legendre quadrature has
been proved to have satisfactory convergence properties, and
achieves the highest degrees of precision. A Gauss-Legendre
quadrature with n points has degrees of precision 2n− 1 and
order 2n. The Gauss-Legendre quadrature on the integration
interval [−1, 1] is based on the Legendre orthogonal polyno-
mials P0(x) := 1 and Pn(x) := 1

2nn!
dn

dxn

[
(x2 − 1)n

]
.

The Gauss points x1, . . . , xn are the zeros of Pn(x). The
weights A1, · · · , An can be derived as follows

Ak =
2
n

1
Pn−1(xk)P ′n(xk)

. (44)

The convergence of (43) can be derived as∣∣∣∣Q(f)−
∫ a

0

f(x)dx
∣∣∣∣ ⩽ cka

k+1v−k
∥∥∥f (k)

∥∥∥
L∞(0,a)

, (45)

for f ∈ Ck−1,1([0, a]), quadrature rule Q of order v ⩾ k with
positive weights. The reference [33, Theorem 6.2] shows that

|dQ(z)− d(z)| ⩽ ck2kakv−kΦ(|z| a ∥K∥k), (46)

where d(z) := det(I + zT ), K ∈ Ck−1,1([0, a]2), quadrature
rule Q of order v ⩾ k with positive weights, ∥K∥k =
max

i+j⩽k

∥∥∥∂i
1∂

j
2K
∥∥∥

L∞
and Φ(z) =

∑+∞
n=1

n(n+2)/2

n! zn.

The convergence of the numerical calculation scheme guar-
antees the reliability of the scheme. Therefore, the Fredholm
determinant is not only a mathematical representation of the
mutual information, but also provides a useful tool to calculate
the mutual information that can be obtained from the received
noisy field.

V. MUTUAL INFORMATION WITH FINITE-LENGTH
TRANSCEIVERS UNDER COLORED NOISE FIELD

In the above section, we have discussed the mutual infor-
mation between finite-length source and destination under the
assumption of a white noise field, which is a common model
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adopted by recent works. However, the white noise model
is only a simplified model that comes from the assumption
of traditional MIMO modeling. In this section, we consider
other mechanisms which have been analyzed in Section III
that may contribute to the noise, and analyze the mutual
information of the proposed model. A general numerical
calculation procedure is proposed of the mutual information,
which can be viewed as the extension of the numerical scheme
in Section IV.

A. Mutual Information Based on Operator Analysis

In Section. III-B, we have derived a non-white noise model,
which means that the noise field has non-zero spatial corre-
lation coefficients. Following the same procedure, we assume
that the covariance kernel of the noise field is KN (r, r′) ̸=
Pδ(r−r′), and the corresponding operator is TN : L 2(VR)→
L 2(VR). The operator of the received noisy field Y = E+N
is denoted by TY . Here we can perform Mercer expansion
on the electric field E(r) and the noise field N(r) similar to
Section IV, which leads to RE(r, r′) =

∑
k λkϕk(r)ϕ∗k(r′),

E(r) =
∑

k ξE,kϕk(r), RN (r, r′) =
∑

k λ
′
kψk(r)ψ∗k(r′) and

N(r) =
∑

k ξN,kψk(r). The received field Y (r) can also be
decomposed as Y (r) =

∑
k ξY,kφk(r). However, different

from the white noise case where ψ(r) can be arbitrary orthog-
onal bases, the expansion of non-white noise is confirmed,
which means that the decomposition of E(r), N(r) and Y (r)
will lead to different sets of eigenfunctions and the mutual
information can not be directly obtained like (29).

Inspired by [15], we can construct two spaces H1 and
H2 which are extended by ξE,k and ξY,k separately. The inner
product in these spaces is defined as the cross-correlation
between two random variables in the space. The mutual
information between E(r) and Y (r) is actually the difference
between the space H1 and H2 and is dertermined by the
angle between them according to [15]. Specifically, the mutual
information can be evaluated by finding new sets of bases
ξ̂E,k and ξ̂Y,k in H1 and H2 which satisfy E[ξ̂E,k1 ξ̂

∗
Y,k2

] = 0,
E[ξ̂E,k1 ξ̂

∗
E,k2

] = 0 and E[ξ̂Y,k1 ξ̂
∗
Y,k2

] = 0 when k1 ̸= k2.
These ξ̂ can be viewed as the linear combinations from ξ
decomposed from E(r) and Y (r). Moreover, they correspond
to the projection operators B1 = P1P2 and B2 = P2P1, where
P1 is the projection onto the space H1 and P2 is the projection
onto the space H2. We have

I = −
∑

k

log(1−
E[ξ̂E,k ξ̂

∗
Y,k]2

E[ξ̂E,k ξ̂∗E,k]E[ξ̂Y,k ξ̂∗Y,k]
)

= −logdet(1− P1P2) = −logdet(1− P2P1). (47)

Since P1 is the projection operator, we have E[P1ξE ∗ξ∗E ] =
E[ξY ξ∗E ]. By defining the operator TD and TD′ which repre-
sent the mutual correlation between E(r) and Y (r), we can
obtain P1 and P2, thus obtaining the mutual information. Here
we define TD by (TDψ)(r) :=

∫
VR

E[Y (r)E∗(r′)]ψ(r′)dr′

and TD′ by (TD′ψ)(r) :=
∫

VR
E[Y ∗(r)E(r′)]ψ(r′)dr′. They

can also be represented by infinite-size matrix to be easier to
understand, as TD ∼ ∥E [⟨ϕj |Y ⟩⟨E|ϕi⟩]∥mi,j=1. Through this
approach we have P1TE = TD and P2TY = TD′ , which

means P1 = TDT
−1
E and P2 = TD′T

−1
Y . Therefore we have

I(J ;Y ) = I(E;Y ) = −logdet(1− TDT
−1
E TD′T

−1
Y )

= −logdet(1− TD′T
−1
Y TDT

−1
E ), (48)

This result inspired by [15] is about stochastic process over
the real line and the sampling of it is a single variable, which
coincides with the model of parallel linear transceivers that we
used. It is necessary to mention that such expression based on
operator is not restricted to this simplified scenario, but can
be extended to random field over arbitrary manifolds and the
sampling of it can be a random vector, which has theoretical
bases from [34]. By using random field on two-dimensional
surfaces we can extend the model from linear transceivers to
rectangular or circular transceivers. By using random vector
as the sampling result we can extend the scalar wave field to
three-dimensional wave field.

In our assumption, the noise field N is independent of the
noiseless electric field E, which means TD = TD′ = TE . The
mutual information in (48) is then simplified to

I(E;Y ) = −logdet(1− TDT
−1
E TD′T

−1
Y )

= −logdet(1− TE(TE + TN )−1). (49)

In the special case when the noise field is assumed to
be a white Gaussian random field, the kernel correspond-
ing to the noise operator is KN (r, r′) = n0

2 δ(r − r′).
Since for arbitrary ϕ(r) the following integral equation holds∫ a

0
KN (r, r′)ϕ(r′)dr′ = n0

2 ϕ(r), we have TN |ϕ⟩ = n0
2 |ϕ⟩.

Therefore, the difference between TN and the identity operator
1 is only a constant factor, i.e., we can represent TN by
TN = n0

2 1. The mutual information in (49) can be further
simplified to

I(E;Y ) = −logdet(1− TE(TE + TN )−1)

= logdet
(
1 +

TE

n0/2

)
, (50)

which coincides with the formula derived in (40). Therefore,
the mutual information under white noise model can be viewed
as a special case of the result in this section.

B. Numerical Calculation of the Mutual Information
As shown in the previous subsection, we can express the

mutual information between the electric field and the received
noisy field by (49). Now we want to find a numerical algorithm
to calculate the mutual information, and show how the noise
field affects the information we can obtain from the received
field.

In Section IV, we have clarified that the numerical approx-
imation of the mutual information converges under the white-
noise scenario. For the colored noise scenario, if we view
the operator TE(TE + TN )−1 as a whole, we can directly
utilize the conclusion of convergence in the case of white
noise. However, we can not directly discretize TE(TE+TN )−1

because the inverse operator (TE + TN )−1 is hard to obtain.
Therefore, we discretize TE and TE + TN separately instead
of directly discretizing TE(TE + TN )−1. The algorithm of
the discretization is as Algorithm 1, where the kernel of TN

equals RN,non−white(r, r′) + σ2
whiteδ(r − r′).

Remark 6: The discretization algorithm of the mutual
information not only has the mathematical meaning but
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Algorithm 1 Numerical Calculation Scheme for the Mutual
Information
Input:

RE(r, r′) ▷ the kernel of the operator TE

RN,non−white(r, r′)
σ2

white

a ▷ the length of the destination
m ▷ the size of the discretized matrix

Output:
Iapprox ▷ approximation of the mutual information

1: (wm
1 , r

m
1 ) ← Quadrature(0, a, m)

2: a0 ← 0
3: for 1 ≤ i ≤ m do
4: ai ← ai−1 + wi

5: for 1 ≤ i ≤ m do
6: for 1 ≤ j ≤ m do
7: KE,i,j ←

∫ ai

ai−1

∫ aj

aj−1
KE(x, y)dydx ≈

wiwjRE(ri, rj)
8: KN,i,j ←

∫ ai

ai−1

∫ aj

aj−1
KN (x, y)dydx ≈

wiwjRN,non−white(ri, rj) + wiσ
2
white1i=j

9: Ksep ← KE(KE + KN )−1

10: Iapprox ← −logdet(I−Ksep)
11: return Iapprox

also has physical correspondence. Since −logdet(I −Ksep)
in Algorithm 1 equals log det(KE + KN )/det(KN ),
which is the form of the mutual information of
multiple Gaussian channel model. If we express KE,i,j

and KN,i,j by E
[∫ ai

ai−1
E(x)dx

∫ aj

aj−1
E∗(y)dy

]
and

E
[∫ ai

ai−1
N(x)dx

∫ aj

aj−1
N∗(y)dy

]
respectively, it is easy to

find that the mutual information after discretization can be
viewed as using several patch antennas in the destination
region which receives the integral of the electric field.
Therefore, the convergence of the numerical approximation of
the mutual information shows how the discrete destinations
approach the continuous one. Here we use Gauss-Legendre
quadrature rule because it converges faster than the
equally-spaced trapezoid or rectangular quadrature rules.

The algorithm above that separately discretize TE and
TE + TN is used to numerically calculate the information
obtained from the received electric field under non-white
noise. The accuracy is guaranteed by the quadrature rule.
Based on the numerical scheme, we will provide some numer-
ical results of the mutual information. Here we assume that
the source and destination both have length L, the current
density J(s) on the source has the autocorrelation function
RJ(r, r′) = δ(r − r′), which means that no channel state
information at the transmitter (CSIT) is available. Then, the
electric field on the destination can be derived by

RE(r, r′) =
∫ L

0

∫ L

0

g(r, s)δ(s− s′)g∗(r′, s′)dsds′

=
∫ L

0

g(r, s)g∗(r′, s)ds. (51)

The noise field is considered a mixture of the measurement
noise and the radiation interference. We denote the mixed

Fig. 3. Mutual information I(L) in (49) calculated by applying Algorithm 1.
The x-axis represents the number of discretization points, and the y-axis is the
mutual information measured in nats. The mutual information value increases
as the number of discretization points increases, and finally converges to the
continuous-space mutual information defined by the supremum in (23).

noise field4 by N(r) = σ1Nmea(r) + σ2Nint(r) and its
autocorrelation function by RN (r, r′). According to (18),
we have

RN (r, r′)

= σ2
1δ(r − r′) + 2σ2

2

(
sin(κr − κr′)
(κr − κr′)3

− cos(κr − κr′)
(κr − κr′)2

)
.

(52)

Now we set the length L of the source and destination
to 2 m and the wavelength λ of the electromagnetic wave to
0.25 m. The distance between the source and the destination is
fixed to 1 m. Therefore, the half-wavelength sampling on the
destination has 16 sampling points. The mutual information
obtained from the discretization is expressed in Fig. 3. In this
figure, the power of the radiation interference is fixed to
σ2

2 = 0.5 [V2/m2], and the measurement noise is flexible.
It is shown that when the power of the measurement noise
is large, the mutual information converges quickly with the
increasing number of discretization points. For example, when
σ2

1 = 1 [V2/m] or σ2
1 = 10−1 [V2/m], the information

obtained from the continuous destination is almost the same
as the information obtained from the 16-points discretization.
However, when σ2

1 [V2/m] is very small, which means that the
radiation interference plays a dominant role in the noise model,
the gap between the continuous case and the discretized case
becomes obvious. When σ2

1 = 10−5 [V2/m], the information
obtained from the continuous destination is 9% larger than
the information obtained from the 16-points discretized desti-
nation. When σ2

1 = 10−10 [V2/m], the information obtained
from the continuous destination is 20.6% more than that
obtained from the 16-points discretized destination.

Fig. 3 also demonstrates that the half-wavelength sampling
is strictly suboptimal, since 16 discretization points fail to har-
vest all the mutual information provided by (49). Furthermore,
the extent of such suboptimality depends on the ratio σ2

1/σ
2
2 of

the white noise power with respect to the non-white noise

4Here the unit of σ2
1 is [V2/m] and the unit of σ2

2 is [V2/m2]. These
parameters are used to keep the unit of N(r) to be [V/m]. The units of
σ2
1 and σ2

2 are different because the measurement noise comes from unideal
measurement or data processing steps, while the radiated interference is
strongly correlated to the wavelength of the electromagnetic field.

Authorized licensed use limited to: Tsinghua University. Downloaded on April 18,2023 at 07:57:00 UTC from IEEE Xplore.  Restrictions apply. 



WAN et al.: MUTUAL INFORMATION FOR ELECTROMAGNETIC INFORMATION THEORY BASED ON RANDOM FIELDS 1993

power. This is because the colored interference noise is more
“structural”, and lives in a lower-dimensional noisy subspace,
while the white noise projects equally into any subspace. Thus,
a smaller portion of white noise leads to more clean signal
subspaces, which further results in more mutual information.

VI. MUTUAL INFORMATION WITH INFINITE-LENGTH
TRANSCEIVERS

In the above sections, we have analyzed the mutual infor-
mation between finite-length transceivers and provided its
expression based on the Fredholm determinant. To further
strengthen the connection between the model of parallel lin-
ear transceivers and classical model in information theory,
we introduce an ideal model in which the transceivers are of
infinite length. A strong correspondence between this model
in the spatial dimension and the classical signal model in
the time dimension is built. Based on this correspondence,
we utilize the analyzing methods in classical information
theory to provide the mutual information and the capacity for
this scenario.

A. Connection Between the Infinite-Length Transceivers and
Classical Models in Information Theory

Since we extend the finite-length transceivers to infinite-
length transceivers in our new ideal model, we have E(r) =∫ +∞
−∞ g(r, s)J(s)ds. The main difference between this model

and the model with finite-length transceivers is that the current
density and the electric field become random processes on the
infinite-length spatial dimension, which is similar to the chan-
nel model Y (t) =

∫ +∞
−∞ h(t, τ)X(τ)dτ in classical informa-

tion theory. Similar to the classical information theory which
often assumes that X(τ) and Y (t) are stationary random
processes, we assume that, the current density J and electric
field E are also stationary stochastic processes in the space
domain. The spatial stationary means that, E[J(s)J∗(s′)] only
depends on ∆s = s′− s, and we can introduce the autocorre-
lation function as RJ(∆s) = E[J(s)J∗(s′)] and RE(∆r) =
E[E(r)E∗(r′)] =

∫ +∞
−∞

∫ +∞
−∞ g(r, s)RJ(∆s)g∗(r′, s′)dsds′.

The SSD can then be derived as

SJ(κ) =
1√
2π

∫ +∞

−∞
RJ(∆s)e−jκ∆sd∆s. (53)

The SSD of the electric field can then be derived by the
SSD of the current density via the Fourier transform of the
Green’s function G(κ):

SE(κ) = 2πSJ(κ)|G(κ)|2. (54)

B. Spatial Spectrum Analysis of the Communication Between
Transceivers

In this subsection, we will reveal how some important
parameters affect the communication quality of the system
with continuous source and destination from G(κ), which is
the Fourier transform of the Green function. We introduce
Lemma 1 to derive a closed-form solution for G(κ).

Lemma 1: The Fourier transform of the Green function in
(24) can be expressed by G(κ) = F1(κ) ∗ F2(κ), where

F1(κ) =
−jZ0d

2

4πλ


π

2
jJ0(dm)− π

2
Y0(dm), [0 < κ <

2π
λ

]

K0(dm), [κ >
2π
λ

]

(55)

with m =
√
|( 2π

λ )2 − κ2|, and

F2(κ) = d

√
π

2
e−d|κ| +

jdλ
2π

√
2
π
|κ|K1(d |κ|)

− jλ
π

[√ 2
π
K0(d |κ|)− d

√
2
π
|κ|K1(d |κ|)

]
− (

λ

2π
)2

1
2d

√
π

2
(1 + |dκ|)e−|dκ|

+ (
λ

2π
)2
[√π

2
2e−d|κ|

d
− 1
d

√
π

2
(1 + |dκ|)e−|dκ|

]
.

(56)
Proof: See Appendix A.

From the Fourier transform of the Green function in
Lemma 1, we can find that the distance between the source
and destination d deeply affects the behavior of |G(κ)|. Since
|G(κ)| depicts how the spectrum of the current on the source
affects the spectrum of the electric field on the destination,
larger values of |G(κ)| will cause higher channel gain in the
corresponding wavenumber bands.

In Fig. 4, we plot |G(κ)| with different distances d while λ is
fixed to 5 m. We find that |G(κ)| has a main lobe in the band
[−κ0, κ0], which means that the electromagnetic wave is a
plane wave. When κ equals 0, the wavefront of the plane wave
is parallel to the linear destination. The figure of G(κ) has side
lobes when κ falls out of the band [−κ0, κ0], which means that
the corresponding component of the electromagnetic wave is
an evanescent wave and vanishes when the distance is larger
than the wavelength. The channel with obvious side lobes can
support broad bandwidth in the wavenumber domain, thus
the DoF can be increased. We find that, when d decreases,
the main lobe and the side lobes both have more energy.
Therefore, the DoF and the gain per degree both increase.
From this phenomenon, we conclude that with small d which
is comparable with the wavelength, we can get more DoFs
besides the power gain per degree, thus improving the channel
capacity. This phenomenon is in the reactive near-field region,
which only has theoretical meanings and is acceptable to be
neglected in the current wireless communication scenarios.

C. Capacity Between the Transceivers
We suppose that the noise obeys the spatial additive white

Gaussian noise (AWGN) model, which means that the auto-
correlation function of the noise RN (∆s) = σ2δ(∆s) and the
SSD of the noise is SN (κ) = σ2

√
2π

. Here we follow [7] to
assume that the power constraint5 is similar to that of the
traditional MIMO model, which constrains the sum of the

5The radiation power which can be calculated from the Poynting vector is
physically more meaningful, but the optimal field distribution is very hard to
derive under this power constraint, so here we impose the power constraint
on the SSD.
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Fig. 4. Fourier transform of the Green function with different distances d.

squares of current excitations on the source antennas. Note that
the integral of the square of current in the spatial domain can
be transferred to the integral of its spectrum in the wavenumber
domain based on the Parseval’s theorem. Thus, the power
consumption for the source can be bounded by∫ +∞

−∞
SJ(κ)dκ ⩽ P. (57)

Inspired by the integral form of the Shannon capacity for
colored AWGN noise channel [35], [36], the channel can be
split to infinite narrow-band subchannels in the wavenum-
ber domain. For each subchannel, the capacity is dCκ1 =
1
2π log

(
1 + SE(κ1)

SN (κ1)

)
dκ1. Therefore, the overall capacity is

C =
1
2π

∫ +∞

−∞
log
(

1 +
2πSJ(κ)

SN (κ)/|G(κ)|2

)
dκ. (58)

To simplify the analysis, we introduce the equivalent noise
N ′ with SSD SN ′(κ) = SN (κ)/(2π|G(κ)|2). To derive the
best SSD of the current density SJ(κ), we obtain the following
Theorem 1.

Theorem 1: For the overall capacity in (58) and the power
constraint for the current density in (57), the SSD of the best

current density obeys SJ(κ) =
(

1
2πµ − SN ′(κ)

)+

, where µ
is obtained by the power constraint.

Proof: To obtain the optimal SSD SJ(κ) that maximizes
(58), we apply the variational calculus [37]. The Lagrange
multiplier µ can be introduced to take into consideration the
power constraint

∫
SJdκ ⩽ PJ :

L(SJ , µ) =
1
2π

∫ +∞

−∞
log
(

1 +
SJ(κ)
SN ′(κ)

)
dκ

− µ
(∫ +∞

−∞
SJ(κ)dκ− PJ

)
. (59)

Taking the variation of (59) we obtain

δC =
1
2π

∫ +∞

−∞

1

1 + SJ (κ)
SN′ (κ)

δSJ(κ)
SN ′(κ)

dκ− µ
∫ +∞

−∞
δSJ(κ)dκ.

(60)

From (60) we obtain that the optimal solution for SJ should
satisfy 1

2π(SJ (κ)+SN′ (κ)) − µ ≡ 0. Taking the non-negative
condition on SJ into consideration, we obtain SJ(κ) =(

1
2πµ − SN ′(κ)

)+

.

Fig. 5. Optimal SSD of the current density on the source based on variational
calculus.

For example, we consider a set of parameters where the
wavelength λ is 5 m and the distance d between the two
parallel lines is 1 m. We use AWGN model with the noise SSD
SN (κ) = 90 [V2/m]. The power constraint for the current
density P is equal to 3 [A2/m4]. From Theorem 1 we can
derive the best SSD of the source current, as shown in Fig. 5.
It is worth noticing that the scenario considered here is in the
reactive near field, when the wavelength is comparable to the
distance between the transceivers. The best spectrum density in
the [−κ0, κ0] band is nearly flat. This phenomenon coincides
with Fig. 6 in [1], where discrete Fourier bases are chosen
to decompose the channel instead of the continuous Fourier
transform we adopted in this section.

VII. CONCLUSION

In this paper, we analyzed the mutual information and
the capacity of electromagnetic fields based on random field
theory. We first developed the system model of communication
between two continuous regions based on random fields. The
model based on random fields provided a general framework
for solving the problems like mutual information and capacity
for EIT. Then, we considered a simplified model with parallel
finite-length linear source and destination and analyze the
mutual information under white and colored noise fields.
Numerical results confirmed the suboptimality of the half-
wavelength sampling. Finally, we considered an ideal model
with an infinite-length destination and obtained the mutual
information and capacity through SSD. Moreover, the gain
of DoF and mutual information in the reactive near-field
region is shown using SSD. Further work will focus on the
analytical solutions of more general cases like non-linear
sources and destinations. The correlation between the current
density distribution on the source and the radiated power in
the space is also necessary to be explored.

APPENDIX A
PROOF OF LEMMA 1

For the Green function in (24), we split it into the product
of two functions g(x) = f1(x)f2(x), where

f1(x) =
−jZ0ηe

j2π
√

x2+d2/λ

2λ
√
x2 + d2

, (61a)
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f2(x) =
d2

x2 + d2
+

j
2π
√
x2 + d2/λ

d2 − 2x2

x2 + d2

− 1
(2π/λ)2(x2 + d2)

d2 − 2x2

x2 + d2
. (61b)

Utilizing the convolution theory, we can express G(κ) by
G(κ) = F1(κ)∗F2(κ), where F1(κ) = F [f1(x)] and F2(κ) =
F [f2(x)].

For the Fourier transform of f1(x), we have

F1(κ) =
1√
2π

∫ +∞

−∞

−jZ0e
j2π

√
x2+d2/λ

2λ
√
x2 + d2

ejκxdx = A1 +A2,

(62)

where A1 = 1√
2π

∫ +∞
−∞

−jZ0ej2π
√

x2+d2/λ

2λ
√

x2+d2 cosκxdx and A2 =

1√
2π

∫ +∞
−∞

Z0ej2π
√

x2+d2/λ

2λ
√

x2+d2 sinκxdx. Since Z0ej2π
√

x2+d2/λ

2λ
√

x2+d2 is an

even function, it is obvious that A2 equals 0. For A1, we utilize
[38, Eq. (3.876)] to get

A1 =
−jZ0d

2

4πλ


π

2
jJ0(dm)− π

2
Y0(dm), [0 < |κ| < 2π

λ
]

K0(dm), [|κ| > 2π
λ

]

(63)

where m denotes
√∣∣∣( 2π

λ )2 − κ2
∣∣∣. Then we obtain the closed-

form solution of F1(κ) = A1.
For the Fourier transform of f2(x), we need to derive

the Fourier transform of 1
(d2+x2)3/2 , x2

(d2+x2)3/2 , 1
(d2+x2)2

and x2

(d2+x2)2
. From [38, Eq. (3.961)], we can get

F
[

1
(d2+x2)3/2

]
= 1

d

√
2
π |κ|K1(d |κ|) and F

[
x2

(d2+x2)3/2

]
=√

2
πK0(d |κ|) − d

√
2
π |κ|K1(d |κ|). For 1

(d2+x2)2
, we use

residue theorem to get

F

[
1

(d2 + x2)2

]
= 2πj Res

x=jd

[
ejκx

(d2 + x2)2

]

=
1

2d3

√
π

2
(1 + |dκ|)e−|dκ|. (64)

For x2

(d2+x2)2
, we can get

F

[
x2

(d2 + x2)2

]
= F

[
1

d2 + x2

]
− d2F

[
1

(d2 + x2)2

]

=

√
π
2 e
−d|κ|

d
− 1

2d

√
π

2
(1 + |dκ|)e−|dκ|

(65)

Finally, we can get

F2(κ) = d

√
π

2
e−d|κ| +

jdλ
2π

√
2
π
|κ|K1(d |κ|)

− jλ
π

[√ 2
π
K0(d |κ|)− d

√
2
π
|κ|K1(d |κ|)

]
−
(
λ

2π

)2 1
2d

√
π

2
(1 + |dκ|)e−|dκ|

+
(
λ

2π

)2 [√π

2
2e−d|κ|

d
− 1
d

√
π

2
(1 + |dκ|)e−|dκ|

]
.

(66)
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